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Advanced Information Systems Technology project began in 2020

Aquaculture is a growing industry around the Bay and world-wide — resources managers monitor water
quality from boats to spot-check for problems. Remote sensing may provide early warning of harmful
algal blooms and polluted run-off

Optical techniques are
explored to exploit new
technology in complex
environment
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Future space sensors will provide information about phytoplankton communities, ecosystem health
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https://pace.gsfc.nasa.gov/

Maryland water quality criteria for shellfish harvesting

Parameter name

Water Quality Threshold

Fecal coliform

<14 MPN median per100ml

Bacteriological
Escherichia coli

< 410 count per 100ml|

Dissolved oxygen

> 5 mg/l

Temperature < 90°F/32°C

PH 6.5-8.5

Turbidity <150 nephelometer
turbidity units

Color < 75 platinum cobalt units

Water clarity

> 13% (tidal fresh)

National Water Quality Monitoring
Council (NWQMC), Chesapeake
Bay Program (CBP) data acquired
(1984-present) for Chl-a, DO, Kd,
pH, temperature, salinity, bacteria

MODIS chlorophyll-a map from July 2, 2019 with routine
sampling sites by Maryland and Virginia superimposed


http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-3.htm

Water quality criteria for shellfish harvesting

Parameter name

Water Quality Threshold

Fecal coliform

<14 MPN median per100ml

Bacteriological
Escherichia coli

< 410 count per 100ml|

<

Dissolved >
Mved oxygen |>5mg/l
Temperature < 90°F/32°C
pH 6.5-8.5
Turbidity <150 nephelometer
turbidity units
Color < 75 platinum cobalt units

Water clarity

> 13% (tidal fresh)

National Water Quality Monitoring
Council (NWQMC), Chesapeake
Bay Program (CBP) data acquired
(1984-present) for Chl-a, DO, Kd,
pH, temperature, salinity, bacteria

Satellite data processed (Sentinel
3a&3b OLCI, Aqua MODIS) to
derive Rrs, Chl-a, Kd, Rhos

Exploring relationship between
satellite spectral bands, low
oxygen, high chlorophyll, turbidity

Field and lab work impacted by
COVID-19: future work will
incorporate absorption and
fluorescence of samples collected
around the Bay

.....

MODIS chlorophyll-a map from July 2, 2019 with routine
sampling sites by Maryland and Virginia superimposed


http://www.dsd.state.md.us/comar/comarhtml/26/26.08.02.03-3.htm

Low dissolved oxygen (hypoxia) as a proof-of-concept

e Establish method for using
optical remote sensing for

water quality HIGH nutrient inputs

e Low Dissolved Oxygen
(Hypoxia) is large scale,
seasonal problem related to
biological and physical
mechanisms, i.e. algal biomass
decay with stratification

PH e ¥ ¥%

e Although not visible in remote oW e ,nputs

sensing, train Al to recognize its
precursors, test feasibility for ol
water quality
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Large phytoplankton blooms, seen at surface, precede hypoxia

e

e Nutrient run-off, large phytoplankton <[] sentin mEE s - - e
blooms, warming and stratification as
precursors to low oxygen conditions VIR Il E - an

e Sentinel 3 OLCI (2016-present) currently T B - .= NN
best spectral resolution, esp. red edge

e Aqua MODIS (2002-present) has good fsat 8 ( N s e

spectral resolution, longest time series

e Chesapeake Bay is challenging for
atmospheric correction or Rrs, Chl-a:

o AERONET OC will soon be installed
north of Bay Bridge for calibration

o Use top of atmosphere reflectances
minus Rayleigh scattering, Rhos

o New CSDAP project will use acolite
software to derive better options




Train and validate machine learning with VIMS hypoxia model

Bottom Oxygen: Forecast
July 23, 2020

10 Blue -> high bottom oxygen
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-> marginal oxygen

Red -> very low bottom oxygen (hypoxia)

Feature variables:

Satellite: Rhos to indicate organic matter

ERAS: wind (u & V)

VIMS: currents (u, v, w), temperature (T), salinity(S)
Ancillary: day of year for seasonal variations

Label variable: DO (from VIMS and CBP in situ data)
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3-D array prediction for a region

Hypoxic Waters

Source: https://www.vims.edu/research/topics/dead zones/forecasts/cbay



https://www.vims.edu/research/topics/dead_zones/forecasts/cbay
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Integration of remote sensing into ML for hypoxia

Water Quality Parameter Segmentation
Feature Segmentation Model

S3A-OLCI-0179_043_20190409T153743.nc

Feature matching utilizing weakly
annotated data (i.e., in situ
measurements)
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ML architecture around a point of interest to root cause
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Preparation of satellite data for bloom detection within ML

Sentinel-3A OLCl image  Sentinel-3B OLCI image
2020/04/06 2020/04/09

First look: weekly
composites of
cloud-free Rhos

Partfial scenes
create edges in
composites

Atmospheric gas
and aerosol
differences
between scenes

Daily scenes to
resolve features

Credit: Amita Mehta



Preparation of satellite data for integration info ML
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Resume field & lab work for optical indicators of bacteria

» Literature shows correlation between E-coli
enumeration and enhanced protein-like
fluorescent peaks

» Protein-like peak, tryptophan-like fluorescence,
at 250nm excitation and 355 emission

Protein Fluorescence Intensity vs Fecal Coliform Count

0 50 100 150 200 250 300 350 400 450 500
Fecal Coliform Count (MPN/100mL)

Credit;: Shannon McDonnell



Early results and next steps

Implementing ML semantic segmentation pipeline modules (U-Net CNN, SegNET,
LSTM)

Evaluating applicable data augmentation strategies for training, e.g. GAN for
generating extra training examples utilizing weakly annotated data, i.e. in situ
measurements, physical conditions, run-off

Next: resume data collection and analysis: target poor water quality; distinguish
pertinent amino acids, e.g. tyrosine/tryptophan, brighteners.

Analyze spectral ratios of phytoplankton pigments and bacteria regions within
complex CDOM absorption and fluorescence spectra

Analyze high resolution commercial satellite data in combination with sampling,
including DESIS (hyperspectral, 30m with 5m PAN band, launched 2019)



Harmful Algal Bloom detection in the Chesapeake Bay
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https://coastwatch.noaa.gov/cw_html/NCCOS.html
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Trade-offs in Satellite Technology

Trade-off in spectral vs spatial resolution

* More narrow spectral bands = Larger bins or pixels
* Few broad spectral bands > Smaller pixel

Trade-off in frequency vs spatial resolution

 Larger pixel - More frequent revisit
« Smaller pixel - Less frequent revisit




Digital Globe, + High spatial <1 m

» Low spectral & uncalibrated

Planet, etC- » Low temporal, upon tasking (not guaranteed)
Landsat OLL * Medium spatial (10-30 m), Global _cogstal
. » Low spectral (3 channels & sun glint issues)
Sent|ne|2 MSI » Low temporal (8-16 day revisit)

MODIS, S3 OLC| It (300-1000 m), Global

» High spectral (5 nm bands)
Ocean COIOr » Medium temporal (2 day revisit)

GLl MR * Medium spatial (30 m), Regional over GoMex, U.S.
» High spectral (10 nm bands)

Geostationary « High temporal (Several looks per day)

. » High spatial (1-10 m) Local
Alrcraft and » Potentially high spectral (5 nm bands)

» Event and permission-specific (i.e. away from
DroneS airports and > 50mi from U.S. Capitol)
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OPERATING & FUTURE THROUGH 2023
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